
Chapter 3

[65]

The relationship between Order and OrderLine objects is the same. An order
can have multiple products; each product will be shown in a separate line
(called as OrderLine) in the Order. So there can be one or more order lines for
a single order, as shown here:

Order

- orderID
- customerID
- status

1 1..*
OrderLine

- orderLineID
- orderID
- productID

The above diagram confirms that for each order, there will be one or more
order lines. We can't use 0..* here in place of 1..* because each order will have
atleast one product in it (as one order line item).
Also, if an order gets cancelled (destroyed), then all order lines will be
destroyed. It doesn't make sense to have order lines that are not a part of any
order—hence the composition.
Many-to-many: A Product can belong to multiple Categories, and a Category
object can include multiple Product objects. To depict such many-to-many
relationships, we use asterisk at both ends of the relationship arrow, as
shown here:

Product

- productID
- name

Category

- categoryID
- name

* *

Also note the aggregation relationship between the Product and the
Category, because both can exist independently of each other.

•

ER Diagram, Domain Model, and N-Layer Architecture

[66]

So, now, we can combine all of the above diagrams and create a simple class diagram
with all of the relationships and multiplicities for our OMS. Here is the combined
UML class diagram for our sample application:

OrderLine

- orderLineID
- orderID
- productId

Customer Order

- customerID
- Name

- orderID
- customerID
- status

1

1 1

*

Product

- name
- code
- unit price

Category

- categoryID
- name

*

*

1..*
1

So we have a very simple domain model of a simple Order Management System.
Now, based on the above classes, let's look at how we can convert this domain model
to code by creating a 1-tier 3-layer architecture based web application.

1-tier 3-layer Architecture using a
Domain Model
Based on the above class diagram, we will create a new simple 3-layered application
using the entities defined in the above domain model. We will create a new ASP.NET
Web Project in VS. This time, you should create two new folders inside your root
web folder (using the Add New Folder option in VS):

BL: This folder will contain all of the business logic domain classes
DAL: This folder will contain the data access code files (for each entity)

•
•

